

Carboniferous: Mississippian and Pennsylvanian (360-300 Mya)

- · Ohio is located near Equator
- · Risen above sea level swamp
- Warm, humid, tropical climate with plenty of vegetation
- · Lots of ferns, reeds
- Dead organic material became today's coal

- For ~300 Myrs, we lose geological record in Ohio due to erosion by water and wind
- Climate was dominantly warm with high levels of CO₂

Ohio's GEOLOGICAL WALK THROUGH TIME at the Ohio State Fairgrounds Natural Resources Park (http://www2.ohiodnr.gov/portals/geosurvey/PDFs/Education/e120.pdf)

The Ohio State University Collete of Pool, Askicultural, and Biv

THE OHIO STATE UNIVERSITY COLLEGE of FOOD, AGRICULTURAL, and ENVIRONMENTAL SCIENCE

Quaternary: Ice Age Comes to Ohio (~1.6Myr) Ohio is located close to current latitude Seas have well retreated Due to Earth's orbital cycles- ice accumulated in Canada Surges and retreats of glaciers make their mark on Ohio's land (~12x) During this time, our climate is seeing about 5°C temperature shifts Large animals disappear ~ 10,000 ya

CFAES

CFAES

More "Recent" Climate Change

- ~14K ya ice retreated and surface warmed
- Younger Dryas: Abrupt cool period between 13,000-10,000
 - Due to freshwater expulsion into N. Atlantic
- Holocene Maximum NH continental ice sheets disappeared
 - Remember Earth's Orbital Parameters?
 Delayed due to ice-albedo feedback.

	TEMPERATURE					PRECIPITATION			
	RANK	YEAR	AVERAGE	DIFFERENCE		RANK	YEAR	TOTAL	DIFFERENCE
ı	1	1998	54.1	2.9		1	2011	55.95	16.50
	2	2012	54.0	2.8		2	1990	51.07	11.62
	3	2016	53.6	2.4] [3	2018	50.93	11.38
	4	1921	53.5	2.3		4	1950	48.34	8.89
ı	5	2017	53.2	2.0		5	2019	46.87	7.42
	6	1991	53.1	1.9		6	1996	46.85	7.40
	7	2020	53.0	1.8		7	2003	46.42	6.97
ı	8	1931	52.9	1.7		8	1929	46.07	6.62
ĺ	9	2006	52.7	1.5		9	2017	45.51	6.06
	9	1990	52.7	1.5		10	2004	45.45	6.00
				e top 10 wette: e top 10 wette:			since 20		'S TOP 10
_	AES								RICULTURAL, and ENVIRONME

Soil Health at the Heart of Adaptation and Mitigation

- Healthy soils impacted by erosion, compaction, and loss of organic matter.
- Food and Agriculture Organization of the United Nations: "It is estimated that soils can sequester around 20 Pg C in 25 years, more than 10 % of the anthropogenic emissions." – Rattan Lal
- Compost can reduce greenhouse gas emissions at landfills, promote uptake of carbon dioxide by vegetation, and help build resilience to climate change in our gardens.

(https://www.compostingcouncil.org/page/ClimateChange Benefits)

CFAES

